Mechanical engineering syllabus

Mechanical engineering examinations

Group A - Compulsory examinations (six required, A1-A5 and one of A6 & a7)

16-Mec-A1 Applied Thermodynamics and Heat Transfer

Thermodynamics: Review of the fundamental laws of thermodynamics, introductory psychrometry and analysis of the ideal gas compressor cycle, Rankine cycle, Otto cycle, Diesel cycle, Brayton cycle and the vapour compression refrigeration cycle.


Textbooks (most recent edition is recommended):

16-Mec-A2 Kinematics and Dynamics of Machines

Kinematic and Dynamic Analysis: Graphical and analytical methods for kinematic analysis of planar and spatial mechanisms and elementary body motion in space, static and dynamic force analyses of mechanisms, gyroscopic forces, dynamics of rotating machinery, cam and gear mechanisms and specifications.

Vibration Analysis: Free and forced vibration of undamped and damped lumped single and multi degrees of freedom systems with, analytical and numerical techniques of solution, viscous damping, vibrational isolation, vibration measurement and control.

Textbooks (most recent edition is recommended):

16-Mec-A3 System Analysis and Control

Open-loop and feedback control. Laws governing mechanical, electrical, fluid, and thermal control components. Mathematical models of mechanical, hydraulic, pneumatic, electrical and control devices. Block diagrams, transfer functions, response of servomechanisms to typical input signals (step function, impulse, harmonic), frequency response, Bode diagram, stability analysis, and stability criteria.


Textbooks (most recent edition is recommended):
- Franklin, Feedback Control of Dynamic Systems.

16-Mec-A4 Design and Manufacture of Machine Elements

Theory and methodology related to conceptual design; review of the methods used in stress analysis; simple design factor approach; variable loads; stress concentrations; bolts and bolted joints; welded joints; springs; shaft and bearing design; clutches, brakes, and braking systems.
The role and characterization of manufacturing technology within the manufacturing enterprise is also examined. Topics include an overview of the deformation process, joining processes, consolidation processes, material removal processes, material alteration processes; composites manufacturing, nano-and-microfabrication technologies rubber processing, glass working, coating processes, mechanical assembly, electronics packaging and assembly, and production lines; and process selection and planning; quality control systems.

Textbooks (most recent edition is recommended):

16-Mec-A5 Electrical and Electronics Engineering


Textbooks (most recent edition is recommended):

16-Mec-A6 Fluid Machinery

Dimensional analysis and similitude. Performance characteristics. Specific speed and machine selection, idealized velocity diagram. System characteristics and operating point and matching a pump to a piping system. System regulation, momentum and energy transfer, thermodynamic analysis, and efficiency definitions. Two-dimensional cascade analysis and performance. Application to pumps, fans, compressors, and turbines. Performance limits due to unsteady flow stalling and cavitation.

Textbooks (most recent edition is recommended):

16-Mec-A7 Advanced Strength of Materials

Stress-Strain Analysis: Stress and strain, transformations, principal stresses, graphical representation by Mohr’s circles of biaxial and triaxial cases, generalized Hooke’s law including thermal strains, equations of equilibrium and compatibility, plane strain and plane stress problems. Failure theories and limit analysis. Euler critical loads for columns, curved beams, thick-walled cylinders and rotating disks, contact stresses, strain gauges and their application, stress concentrations, introductory fracture mechanics.

Energy Methods: Strain energy principles, virtual work, Castigliano’s theorem. Applications to cases of axial, bending, and torsional loadings. Applications to statically indeterminate problems.

Textbooks (most recent edition is recommended):

Group B - Optional examinations (three required)

16-Mec-B1 Advanced Machine Design
Stress analysis and design of machine elements under conditions of: shock, impact, inertial forces, initial and residual stresses, corrosion environments, wear, elevated temperatures (creep), and low temperatures (brittle fracture). Hydrodynamic lubrication. Applications to the design of: journal bearings, power screws, clutches, brakes, couplings, and linkages. Introduction to probabilistic methods in mechanical design.

Textbooks (most recent edition is recommended):

16-Mec-B2 Environmental Control in Buildings


Energy management technology: Energy usage in buildings, control systems and instrumentation, lighting systems operation, engineering/economic analysis principles, energy audit procedures.

Textbooks (most recent edition is recommended):

16-Mec-B3 Energy Conversion and Power Generation


Textbooks (most recent edition is recommended):

16-Mec-B4 Integrated Manufacturing Systems

Production automation and the role of the computer in modern manufacturing systems via an comprehensive overview of applications of advanced technologies in manufacturing and their business impact on the competitive dimensions of cost, flexibility, quality and deliverability. Particular topics include: facility layout; cellular manufacturing; fundamentals of automation, numerical control programming, material handling and storage, automatically-guided vehicles, flexible manufacturing systems, group technology, programmable logic controllers, concurrent engineering, production planning and control, production activity control systems, automatic identification and data collection, lean and agile manufacturing, computer-aided process planning, forecasting, inventory management and control, quality control and inspection and inspection technologies.

Textbooks (most recent edition is recommended):
16-Mec-B5 Product Design and Development

Modern tools and methods for creative product design and development involving product research, establishment of design parameters, experimentation, development of conceptual alternatives, visualization, evaluation, revision, optimization and presentation. Particular topics include: The engineering design process, development processes and organizations, product planning, identifying customers needs, product specifications, concept generation, concept selection, prototyping, robust design, concept testing, product architecture, industrial design, design for manufacturing, patents and intellectual property, product development economics, and managing projects.

Textbooks (most recent edition is recommended):

Primary Text:

Secondary Text:

16-Mec-B6 Advanced Fluid Mechanics

Review of basic concepts; elementary two-dimensional potential flow, vorticity and circulation, one-dimensional compressible flow of an inviscid perfect gas, isentropic flow through nozzles, shock waves, frictional compressible flow in conduits, equations of viscous flow, laminar and turbulent boundary layers. Bernoulli’s equation and Navier-Stokes equations. Dimensional analysis and similitude.

Textbooks (most recent edition is recommended):

16-Mec-B7 Aero and Space Flight

Atmospheric characteristics relating to flight; measurement of air speed. Prediction of 2-D lift and drag using momentum and pressure methods; boundary layers and friction drags; dimensional analysis and wind tunnel measurements pertaining to lift and drag; induced drag and total airplane drag. Propulsion systems: turbo-fan and propeller/engine combinations; propulsion efficiency; thrust/power characteristics. Airplane performance; climb rate, time of climb, ceiling, generalized power required curve; range-payload characteristics; turns, take off, and landing; flight performance including stall, structural, and gust envelopes. Static stability and control. Re-entry and launch issues for space flight.

Textbooks (most recent edition is recommended):

16-Mec-B8 Engineering Materials

Working properties of steel, aluminum, magnesium, and titanium light alloys, superalloys and metal matrix composites. High temperature materials, metallic foams and other cellular materials, precursor-derived ceramics, corrosion of materials, intermetallics, multicomponent alloys, biomedical materials, polymeric composites as structural materials, ultrafine and nanostructured materials. Microscale and nanoscale mechanisms responsible for their unique properties, such as molecular mobility and phase transitions. Working properties of polymers, shape memory alloys, piezoelectric materials, electro-rheological fluids, magnetostrictive materials, and fibre-reinforced composites. Selection of materials. Testing of engineering materials. Emphasis on those used in aircraft, high-speed ground transportation vehicles, underwater, and space applications.
Textbooks (most recent edition is recommended):

Primary Text:

Secondary Text:

16-Mec-B9 Advanced Engineering Structures


Textbooks (most recent edition is recommended):

Primary Text:

Secondary Text:

16-Mec-B10 Finite Element Analysis


Textbooks (most recent edition is recommended):
- W. Bickford, A First Course in Finite Element Method, Irwin.

16-Mec-B11 Acoustics and Noise Control

Function of hearing system, acquired deafness, acoustics standards and recommendations. Basic principles and calculations of acoustics phenomenon. Instrumentation about noise measurement, frequency-analysis sound meter. Acoustics reflection and transmission, characterization and selection of acoustics materials. Room acoustics, preventive

Textbooks (most recent edition is recommended):

Primary Text:

Secondary Text:

16-Mec-B12 Robotics

Robot components (sensors, actuators, and end effectors, and their selection criteria); basic categories of robots (serial and parallel manipulators, mobile robots); mobility/constraint analysis; workspace analysis; rigid body kinematics (homogeneous transformation, angle and axis of rotation, Euler angles, cylindrical and spherical coordinates); manipulator kinematics and motion trajectories (displacement and velocity analyses, differential relations, Jacobian matrix); non-redundant and redundant sensing/actuation of manipulators; manipulator statics (force and stiffness); singularities; and manipulator dynamics.

Textbooks (most recent edition is recommended):

16-Mec- B13 Biomechanics (04-Bio-A4)


Textbooks (most recent edition is recommended):